Welcome to the Java Programming Forums


The professional, friendly Java community. 21,500 members and growing!


The Java Programming Forums are a community of Java programmers from all around the World. Our members have a wide range of skills and they all have one thing in common: A passion to learn and code Java. We invite beginner Java programmers right through to Java professionals to post here and share your knowledge. Become a part of the community, help others, expand your knowledge of Java and enjoy talking with like minded people. Registration is quick and best of all free. We look forward to meeting you.


>> REGISTER NOW TO START POSTING


Members have full access to the forums. Advertisements are removed for registered users.

Results 1 to 2 of 2

Thread: canny algorithm

  1. #1
    Junior Member
    Join Date
    Mar 2012
    Posts
    3
    Thanks
    1
    Thanked 0 Times in 0 Posts

    Default canny algorithm

    Need urgent help
    I am trying to impliment tom gibara's canny's algorithm for edge detection.I am stuck at a point how to give input image..
    <detector.setSourceImage(frame);>
    this line take the input image...but there is no reference of the variable frame.
    I have tried providing a image file there instead but it is of no use.
    what do i do..?






    <import java.awt.image.BufferedImage;
    import java.util.Arrays;
     
    create the detector
     CannyEdgeDetector detector = new CannyEdgeDetector();
    //adjust its parameters as desired
     detector.setLowThreshold(0.5f);
     detector.setHighThreshold(1f);
     //apply it to an image
    [B] detector.setSourceImage(frame);[/B]
     detector.process();
     BufferedImage edges = detector.getEdgesImage();
    /
     
    public class CannyEdgeDetector {
     
    	// statics
     
    	private final static float GAUSSIAN_CUT_OFF = 0.005f;
    	private final static float MAGNITUDE_SCALE = 100F;
    	private final static float MAGNITUDE_LIMIT = 1000F;
    	private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT);
     
    	// fields
     
    	private int height;
    	private int width;
    	private int picsize;
    	private int[] data;
    	private int[] magnitude;
    	private BufferedImage sourceImage;
    	private BufferedImage edgesImage;
     
    	private float gaussianKernelRadius;
    	private float lowThreshold;
    	private float highThreshold;
    	private int gaussianKernelWidth;
    	private boolean contrastNormalized;
     
    	private float[] xConv;
    	private float[] yConv;
    	private float[] xGradient;
    	private float[] yGradient;
     
    	// constructors
     
    	/**
    	 * Constructs a new detector with default parameters.
    	 */
     
    	public CannyEdgeDetector() {
    		lowThreshold = 2.5f;
    		highThreshold = 7.5f;
    		gaussianKernelRadius = 2f;
    		gaussianKernelWidth = 16;
    		contrastNormalized = false;
    	}
     
    	// accessors
     
    	/**
    	 * The image that provides the luminance data used by this detector to
    	 * generate edges.
    	 * 
    	 * @return the source image, or null
    	 */
     
    	public BufferedImage getSourceImage() {
    		return sourceImage;
    	}
     
    	/**
    	 * Specifies the image that will provide the luminance data in which edges
    	 * will be detected. A source image must be set before the process method
    	 * is called.
    	 *  
    	 * @param image a source of luminance data
    	 */
     
    	public void setSourceImage(BufferedImage image) {
    		sourceImage = image;
    	}
     
    	/**
    	 * Obtains an image containing the edges detected during the last call to
    	 * the process method. The buffered image is an opaque image of type
    	 * BufferedImage.TYPE_INT_ARGB in which edge pixels are white and all other
    	 * pixels are black.
    	 * 
    	 * @return an image containing the detected edges, or null if the process
    	 * method has not yet been called.
    	 */
     
    	public BufferedImage getEdgesImage() {
    		return edgesImage;
    	}
     
    	/**
    	 * Sets the edges image. Calling this method will not change the operation
    	 * of the edge detector in any way. It is intended to provide a means by
    	 * which the memory referenced by the detector object may be reduced.
    	 * 
    	 * @param edgesImage expected (though not required) to be null
    	 */
     
    	public void setEdgesImage(BufferedImage edgesImage) {
    		this.edgesImage = edgesImage;
    	}
     
    	/**
    	 * The low threshold for hysteresis. The default value is 2.5.
    	 * 
    	 * @return the low hysteresis threshold
    	 */
     
    	public float getLowThreshold() {
    		return lowThreshold;
    	}
     
    	/**
    	 * Sets the low threshold for hysteresis. Suitable values for this parameter
    	 * must be determined experimentally for each application. It is nonsensical
    	 * (though not prohibited) for this value to exceed the high threshold value.
    	 * 
    	 * @param threshold a low hysteresis threshold
    	 */
     
    	public void setLowThreshold(float threshold) {
    		if (threshold < 0) throw new IllegalArgumentException();
    		lowThreshold = threshold;
    	}
     
    	/**
    	 * The high threshold for hysteresis. The default value is 7.5.
    	 * 
    	 * @return the high hysteresis threshold
    	 */
     
    	public float getHighThreshold() {
    		return highThreshold;
    	}
     
    	/**
    	 * Sets the high threshold for hysteresis. Suitable values for this
    	 * parameter must be determined experimentally for each application. It is
    	 * nonsensical (though not prohibited) for this value to be less than the
    	 * low threshold value.
    	 * 
    	 * @param threshold a high hysteresis threshold
    	 */
     
    	public void setHighThreshold(float threshold) {
    		if (threshold < 0) throw new IllegalArgumentException();
    		highThreshold = threshold;
    	}
     
    	/**
    	 * The number of pixels across which the Gaussian kernel is applied.
    	 * The default value is 16.
    	 * 
    	 * @return the radius of the convolution operation in pixels
    	 */
     
    	public int getGaussianKernelWidth() {
    		return gaussianKernelWidth;
    	}
     
    	/**
    	 * The number of pixels across which the Gaussian kernel is applied.
    	 * This implementation will reduce the radius if the contribution of pixel
    	 * values is deemed negligable, so this is actually a maximum radius.
    	 * 
    	 * @param gaussianKernelWidth a radius for the convolution operation in
    	 * pixels, at least 2.
    	 */
     
    	public void setGaussianKernelWidth(int gaussianKernelWidth) {
    		if (gaussianKernelWidth < 2) throw new IllegalArgumentException();
    		this.gaussianKernelWidth = gaussianKernelWidth;
    	}
     
    	/**
    	 * The radius of the Gaussian convolution kernel used to smooth the source
    	 * image prior to gradient calculation. The default value is 16.
    	 * 
    	 * @return the Gaussian kernel radius in pixels
    	 */
     
    	public float getGaussianKernelRadius() {
    		return gaussianKernelRadius;
    	}
     
    	/**
    	 * Sets the radius of the Gaussian convolution kernel used to smooth the
    	 * source image prior to gradient calculation.
    	 * 
    	 * @return a Gaussian kernel radius in pixels, must exceed 0.1f.
    	 */
     
    	public void setGaussianKernelRadius(float gaussianKernelRadius) {
    		if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException();
    		this.gaussianKernelRadius = gaussianKernelRadius;
    	}
     
    	/**
    	 * Whether the luminance data extracted from the source image is normalized
    	 * by linearizing its histogram prior to edge extraction. The default value
    	 * is false.
    	 * 
    	 * @return whether the contrast is normalized
    	 */
     
    	public boolean isContrastNormalized() {
    		return contrastNormalized;
    	}
     
    	/**
    	 * Sets whether the contrast is normalized
    	 * @param contrastNormalized true if the contrast should be normalized,
    	 * false otherwise
    	 */
     
    	public void setContrastNormalized(boolean contrastNormalized) {
    		this.contrastNormalized = contrastNormalized;
    	}
     
    	// methods
     
    	public void process() {
    		width = sourceImage.getWidth();
    		height = sourceImage.getHeight();
    		picsize = width * height;
    		initArrays();
    		readLuminance();
    		if (contrastNormalized) normalizeContrast();
    		computeGradients(gaussianKernelRadius, gaussianKernelWidth);
    		int low = Math.round(lowThreshold * MAGNITUDE_SCALE);
    		int high = Math.round( highThreshold * MAGNITUDE_SCALE);
    		performHysteresis(low, high);
    		thresholdEdges();
    		writeEdges(data);
    	}
     
    	// private utility methods
     
    	private void initArrays() {
    		if (data == null || picsize != data.length) {
    			data = new int[picsize];
    			magnitude = new int[picsize];
     
    			xConv = new float[picsize];
    			yConv = new float[picsize];
    			xGradient = new float[picsize];
    			yGradient = new float[picsize];
    		}
    	}
     
    	//NOTE: The elements of the method below (specifically the technique for
    	//non-maximal suppression and the technique for gradient computation)
    	//are derived from an implementation posted in the following forum (with the
    	//clear intent of others using the code):
    	//  [url]http://forum.java.sun.com/thread.jspa?threadID=546211&start=45&tstart=0[/url]
    	//My code effectively mimics the algorithm exhibited above.
    	//Since I don't know the providence of the code that was posted it is a
    	//possibility (though I think a very remote one) that this code violates
    	//someone's intellectual property rights. If this concerns you feel free to
    	//contact me for an alternative, though less efficient, implementation.
     
    	private void computeGradients(float kernelRadius, int kernelWidth) {
     
    		//generate the gaussian convolution masks
    		float kernel[] = new float[kernelWidth];
    		float diffKernel[] = new float[kernelWidth];
    		int kwidth;
    		for (kwidth = 0; kwidth < kernelWidth; kwidth++) {
    			float g1 = gaussian(kwidth, kernelRadius);
    			if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break;
    			float g2 = gaussian(kwidth - 0.5f, kernelRadius);
    			float g3 = gaussian(kwidth + 0.5f, kernelRadius);
    			kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius);
    			diffKernel[kwidth] = g3 - g2;
    		}
     
    		int initX = kwidth - 1;
    		int maxX = width - (kwidth - 1);
    		int initY = width * (kwidth - 1);
    		int maxY = width * (height - (kwidth - 1));
     
    		//perform convolution in x and y directions
    		for (int x = initX; x < maxX; x++) {
    			for (int y = initY; y < maxY; y += width) {
    				int index = x + y;
    				float sumX = data[index] * kernel[0];
    				float sumY = sumX;
    				int xOffset = 1;
    				int yOffset = width;
    				for(; xOffset < kwidth ;) {
    					sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]);
    					sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
    					yOffset += width;
    					xOffset++;
    				}
     
    				yConv[index] = sumY;
    				xConv[index] = sumX;
    			}
     
    		}
     
    		for (int x = initX; x < maxX; x++) {
    			for (int y = initY; y < maxY; y += width) {
    				float sum = 0f;
    				int index = x + y;
    				for (int i = 1; i < kwidth; i++)
    					sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);
     
    				xGradient[index] = sum;
    			}
     
    		}
     
    		for (int x = kwidth; x < width - kwidth; x++) {
    			for (int y = initY; y < maxY; y += width) {
    				float sum = 0.0f;
    				int index = x + y;
    				int yOffset = width;
    				for (int i = 1; i < kwidth; i++) {
    					sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]);
    					yOffset += width;
    				}
     
    				yGradient[index] = sum;
    			}
     
    		}
     
    		initX = kwidth;
    		maxX = width - kwidth;
    		initY = width * kwidth;
    		maxY = width * (height - kwidth);
    		for (int x = initX; x < maxX; x++) {
    			for (int y = initY; y < maxY; y += width) {
    				int index = x + y;
    				int indexN = index - width;
    				int indexS = index + width;
    				int indexW = index - 1;
    				int indexE = index + 1;
    				int indexNW = indexN - 1;
    				int indexNE = indexN + 1;
    				int indexSW = indexS - 1;
    				int indexSE = indexS + 1;
     
    				float xGrad = xGradient[index];
    				float yGrad = yGradient[index];
    				float gradMag = hypot(xGrad, yGrad);
     
    				//perform non-maximal supression
    				float nMag = hypot(xGradient[indexN], yGradient[indexN]);
    				float sMag = hypot(xGradient[indexS], yGradient[indexS]);
    				float wMag = hypot(xGradient[indexW], yGradient[indexW]);
    				float eMag = hypot(xGradient[indexE], yGradient[indexE]);
    				float neMag = hypot(xGradient[indexNE], yGradient[indexNE]);
    				float seMag = hypot(xGradient[indexSE], yGradient[indexSE]);
    				float swMag = hypot(xGradient[indexSW], yGradient[indexSW]);
    				float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]);
    				float tmp;
    				/*
    				 * An explanation of what's happening here, for those who want
    				 * to understand the source: This performs the "non-maximal
    				 * supression" phase of the Canny edge detection in which we
    				 * need to compare the gradient magnitude to that in the
    				 * direction of the gradient; only if the value is a local
    				 * maximum do we consider the point as an edge candidate.
    				 * 
    				 * We need to break the comparison into a number of different
    				 * cases depending on the gradient direction so that the
    				 * appropriate values can be used. To avoid computing the
    				 * gradient direction, we use two simple comparisons: first we
    				 * check that the partial derivatives have the same sign (1)
    				 * and then we check which is larger (2). As a consequence, we
    				 * have reduced the problem to one of four identical cases that
    				 * each test the central gradient magnitude against the values at
    				 * two points with 'identical support'; what this means is that
    				 * the geometry required to accurately interpolate the magnitude
    				 * of gradient function at those points has an identical
    				 * geometry (upto right-angled-rotation/reflection).
    				 * 
    				 * When comparing the central gradient to the two interpolated
    				 * values, we avoid performing any divisions by multiplying both
    				 * sides of each inequality by the greater of the two partial
    				 * derivatives. The common comparand is stored in a temporary
    				 * variable (3) and reused in the mirror case (4).
    				 * 
    				 */
    				if (xGrad * yGrad <= (float) 0 /*(1)*/
    					? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
    						? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/
    							&& tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/
    						: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/
    							&& tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/
    					: Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
    						? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/
    							&& tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/
    						: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/
    							&& tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/
    					) {
    					magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag);
    					//NOTE: The orientation of the edge is not employed by this
    					//implementation. It is a simple matter to compute it at
    					//this point as: Math.atan2(yGrad, xGrad);
    				} else {
    					magnitude[index] = 0;
    				}
    			}
    		}
    	}
     
    	//NOTE: It is quite feasible to replace the implementation of this method
    	//with one which only loosely approximates the hypot function. I've tested
    	//simple approximations such as Math.abs(x) + Math.abs(y) and they work fine.
    	private float hypot(float x, float y) {
    		return (float) Math.hypot(x, y);
    	}
     
    	private float gaussian(float x, float sigma) {
    		return (float) Math.exp(-(x * x) / (2f * sigma * sigma));
    	}
     
    	private void performHysteresis(int low, int high) {
    		//NOTE: this implementation reuses the data array to store both
    		//luminance data from the image, and edge intensity from the processing.
    		//This is done for memory efficiency, other implementations may wish
    		//to separate these functions.
    		Arrays.fill(data, 0);
     
    		int offset = 0;
    		for (int y = 0; y < height; y++) {
    			for (int x = 0; x < width; x++) {
    				if (data[offset] == 0 && magnitude[offset] >= high) {
    					follow(x, y, offset, low);
    				}
    				offset++;
    			}
    		}
     	}
     
    	private void follow(int x1, int y1, int i1, int threshold) {
    		int x0 = x1 == 0 ? x1 : x1 - 1;
    		int x2 = x1 == width - 1 ? x1 : x1 + 1;
    		int y0 = y1 == 0 ? y1 : y1 - 1;
    		int y2 = y1 == height -1 ? y1 : y1 + 1;
     
    		data[i1] = magnitude[i1];
    		for (int x = x0; x <= x2; x++) {
    			for (int y = y0; y <= y2; y++) {
    				int i2 = x + y * width;
    				if ((y != y1 || x != x1)
    					&& data[i2] == 0 
    					&& magnitude[i2] >= threshold) {
    					follow(x, y, i2, threshold);
    					return;
    				}
    			}
    		}
    	}
     
    	private void thresholdEdges() {
    		for (int i = 0; i < picsize; i++) {
    			data[i] = data[i] > 0 ? -1 : 0xff000000;
    		}
    	}
     
    	private int luminance(float r, float g, float b) {
    		return Math.round(0.299f * r + 0.587f * g + 0.114f * b);
    	}
     
    	private void readLuminance() {
    		int type = sourceImage.getType();
    		if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) {
    			int[] pixels = (int[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
    			for (int i = 0; i < picsize; i++) {
    				int p = pixels[i];
    				int r = (p & 0xff0000) >> 16;
    				int g = (p & 0xff00) >> 8;
    				int b = p & 0xff;
    				data[i] = luminance(r, g, b);
    			}
    		} else if (type == BufferedImage.TYPE_BYTE_GRAY) {
    			byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
    			for (int i = 0; i < picsize; i++) {
    				data[i] = (pixels[i] & 0xff);
    			}
    		} else if (type == BufferedImage.TYPE_USHORT_GRAY) {
    			short[] pixels = (short[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
    			for (int i = 0; i < picsize; i++) {
    				data[i] = (pixels[i] & 0xffff) / 256;
    			}
    		} else if (type == BufferedImage.TYPE_3BYTE_BGR) {
                byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
                int offset = 0;
                for (int i = 0; i < picsize; i++) {
                    int b = pixels[offset++] & 0xff;
                    int g = pixels[offset++] & 0xff;
                    int r = pixels[offset++] & 0xff;
                    data[i] = luminance(r, g, b);
                }
            } else {
    			throw new IllegalArgumentException("Unsupported image type: " + type);
    		}
    	}
     
    	private void normalizeContrast() {
    		int[] histogram = new int[256];
    		for (int i = 0; i < data.length; i++) {
    			histogram[data[i]]++;
    		}
    		int[] remap = new int[256];
    		int sum = 0;
    		int j = 0;
    		for (int i = 0; i < histogram.length; i++) {
    			sum += histogram[i];
    			int target = sum*255/picsize;
    			for (int k = j+1; k <=target; k++) {
    				remap[k] = i;
    			}
    			j = target;
    		}
     
    		for (int i = 0; i < data.length; i++) {
    			data[i] = remap[data[i]];
    		}
    	}
     
    	private void writeEdges(int pixels[]) {
    		//NOTE: There is currently no mechanism for obtaining the edge data
    		//in any other format other than an INT_ARGB type BufferedImage.
    		//This may be easily remedied by providing alternative accessors.
    		if (edgesImage == null) {
    			edgesImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
    		}
    		edgesImage.getWritableTile(0, 0).setDataElements(0, 0, width, height, pixels);
    	}
     
    }
    >
    Attached Files Attached Files
    Last edited by ath; March 6th, 2012 at 02:04 PM.


  2. #2
    Crazy Cat Lady KevinWorkman's Avatar
    Join Date
    Oct 2010
    Location
    Washington, DC
    Posts
    5,424
    My Mood
    Hungover
    Thanks
    144
    Thanked 636 Times in 540 Posts

    Default Re: canny algorithm

    Please see the link in my signature on asking questions the smart way. Simply attaching a text file and saying that you're stuck isn't very helpful. Instead, provide an SSCCE and ask a specific question.
    Useful links: How to Ask Questions the Smart Way | Use Code Tags | Java Tutorials
    Static Void Games - Play indie games, learn from game tutorials and source code, upload your own games!

  3. The Following User Says Thank You to KevinWorkman For This Useful Post:

    ath (March 6th, 2012)

Similar Threads

  1. Canny Edge Detection
    By tiny in forum Object Oriented Programming
    Replies: 1
    Last Post: March 6th, 2012, 01:54 PM
  2. MWM Algorithm
    By andreas90 in forum Algorithms & Recursion
    Replies: 5
    Last Post: January 11th, 2012, 03:43 AM
  3. CRC algorithm
    By aldykid in forum Algorithms & Recursion
    Replies: 1
    Last Post: August 7th, 2011, 10:50 AM
  4. all i need is algorithm
    By coder.freak in forum Paid Java Projects
    Replies: 3
    Last Post: April 6th, 2011, 11:11 AM
  5. [SOLVED] Algorithm Help
    By aussiemcgr in forum Java Theory & Questions
    Replies: 2
    Last Post: September 10th, 2010, 04:12 PM